Skip to main content

Elasticsearch with Cassandra data

Sooner or later every enterprise application needs full text search with their content. Slor, elasticsearch based on lucene are one the best candidate for developying enterprise search. Elasticsearch got very popularity with its simplicity, but out of box it dosen't support importing data from Cassandra cluster. However Elasticsearch provides river, a river is a pluggable service running within elasticsearch cluster pulling data (or being pushed with data) that is then indexed into the cluster. With a few search i have found a cassandra-river on github from ebay, unfortunatley, project was legeacy and only support Cassandra version 1.2*. With a few effort i rewrite the project with data stax cassandra driver. Here you can find the project, now it support the following features:
1) Cron scheduling;
2) Reading Cassandra rows through Paging;
3) Based on DataStax java driver 2.0;

For quick installation, download the project from the Github. Build with maven:
mvn clean install

it will create river plugin in the folder target/releases/cassandra-river-1.0-SNAPSHOT.zip. To installation the river plugin you could use plugin command line utility.
from the elasticsearch_home/bin directory run the follwing command:
./plugin --url file:/PATH/cassandra-river-1.0-SNAPSHOT.zip --install cassandra-river
now you can start the elasticsearch or and initilize the river with following command:
curl -XPUT 'http://HOST:PORT/_river/cassandra-river/_meta' -d '{
    "type" : "cassandra",
    "cassandra" : {
        "cluster_name" : "Test Cluster",
        "keyspace" : "nortpole",
        "column_family" : "users",
        "batch_size" : 20000,
        "hosts" : "localhost",
        "dcName" : "DC",
        "cron"  : "0/60 * * * * ?"
    },
    "index" : {
        "index" : "prodinfo",
        "type" : "product"
    }
}'
it should start pulling data from your Cassandra cluster.
For remove plugin use:
./plugin --remove cassandra-river

If you have installed elasticsearch _head plugin, you can search as follows:
Improvments plan:
1) Add unit Tests
2) Update index in ES
3) Add newly added rows in ES by date
4) Add multi tables support


Comments

Popular posts from this blog

8 things every developer should know about the Apache Ignite caching

Any technology, no matter how advanced it is, will not be able to solve your problems if you implement it improperly. Caching, precisely when it comes to the use of a distributed caching, can only accelerate your application with the proper use and configurations of it. From this point of view, Apache Ignite is no different, and there are a few steps to consider before using it in the production environment. In this article, we describe various technics that can help you to plan and adequately use of Apache Ignite as cutting-edge caching technology. Do proper capacity planning before using Ignite cluster. Do paperwork for understanding the size of the cache, number of CPUs or how many JVMs will be required. Let’s assume that you are using Hibernate as an ORM in 10 application servers and wish to use Ignite as an L2 cache. Calculate the total memory usages and the number of Ignite nodes you have to need for maintaining your SLA. An incorrect number of the Ignite nodes can become a b...

Tip: SQL client for Apache Ignite cache

A new SQL client configuration described in  The Apache Ignite book . If it got you interested, check out the rest of the book for more helpful information. Apache Ignite provides SQL queries execution on the caches, SQL syntax is an ANSI-99 compliant. Therefore, you can execute SQL queries against any caches from any SQL client which supports JDBC thin client. This section is for those, who feels comfortable with SQL rather than execute a bunch of code to retrieve data from the cache. Apache Ignite out of the box shipped with JDBC driver that allows you to connect to Ignite caches and retrieve distributed data from the cache using standard SQL queries. Rest of the section of this chapter will describe how to connect SQL IDE (Integrated Development Environment) to Ignite cache and executes some SQL queries to play with the data. SQL IDE or SQL editor can simplify the development process and allow you to get productive much quicker. Most database vendors have their own fron...

Load balancing and fail over with scheduler

Every programmer at least develop one Scheduler or Job in their life time of programming. Nowadays writing or developing scheduler to get you job done is very simple, but when you are thinking about high availability or load balancing your scheduler or job it getting some tricky. Even more when you have a few instance of your scheduler but only one can be run at a time also need some tricks to done. A long time ago i used some data base table lock to achieved such a functionality as leader election. Around 2010 when Zookeeper comes into play, i always preferred to use Zookeeper to bring high availability and scalability. For using Zookeeper you have to need Zookeeper cluster with minimum 3 nodes and maintain the cluster. Our new customer denied to use such a open source product in their environment and i was definitely need to find something alternative. Definitely Quartz was the next choose. Quartz makes developing scheduler easy and simple. Quartz clustering feature brings the HA and...