Skip to main content

Benchmarking high performance java collection framework

I am an ultimate fan of java high performance framework or library. Java native collection framework always works with primitive wrapper class such as Integer, Float e.t.c. Boxing and unboxing of wrapper class to primitive data type always decrease the java execution performance. Most of us, always looking for such a library or framework to works with primitive data type in collections for increasing performance of Java application. Most of the time i uses javolution framework to get better performance, however, this holiday i have read about a few new java collections frameworks and decided to do some homework benchmarking to find out, how much they could better than Java native collection framework.
I have examine two new java collection framework, one of them are fastutil and another one are HPPC. For benchmarking i have used java JMH with mode Throughput. For benchmarking i took similar collection for java ArrayList, HashSet and HasMap from two above described frameworks.
Collections:
  1. ArrayList
  2. HashSet
  3. HashMap
Datatype:
Integer for Java native collection and int for HPPC and fastutils.
Host machine configuration:
OS: OSX El Capitan
CPU: 4
RAM: 16
HDD: SDD
JMH Configuration:
Fork: 10
iteration: 10
warm iteration: 10
Benchmark of List:
  1. Java native: ArrayList<Integer>
  2. FastUtil:it.unimi.dsi.fastutil.ints.IntArrayList
  3. HPPC:com.carrotsearch.hppc.IntArrayList
Number of elements: 10 000
Operations: add, retrieve by Iterator
Result of the benchmark is as follows:
it's obvious that FastUtil IntArrayList collection win with huge score. if you are wonder and decided that fastutil framework will always win the benchmark, you will be surprised. Lets examine another collections
Benchmark of Set:
  1. Java native: HashSet<Integer>
  2. FastUtil:it.unimi.dsi.fastutil.ints.IntSet
  3. HPPC:com.carrotsearch.hppc.IntHashSet
Number of elements: 10 000
Operations: put, retrieve by Iterator
Result of the benchmark is as follows:
Wonder!! me too, i have over checked the code. Java native HashSet wins over all other framework, very interesting the result of the fastutil score, it's only 89.
Benchmark of Map:
  1. Java native: HashMap<Integer>
  2. FastUtil:it.unimi.dsi.fastutil.ints.Int2IntArrayMap
  3. HPPC:com.carrotsearch.hppc.IntIntHashMap
Number of elements: 10 000
Operations: put, retrieve by Iterator
Result of the benchmark is as follows:
Similar score with Set, Java native Map is wining over other frameworks. Question is, why fastutil collection framework giving such a poor score? Answer of this question we will examine in next few blogs.

Comments

Popular posts from this blog

8 things every developer should know about the Apache Ignite caching

Any technology, no matter how advanced it is, will not be able to solve your problems if you implement it improperly. Caching, precisely when it comes to the use of a distributed caching, can only accelerate your application with the proper use and configurations of it. From this point of view, Apache Ignite is no different, and there are a few steps to consider before using it in the production environment. In this article, we describe various technics that can help you to plan and adequately use of Apache Ignite as cutting-edge caching technology. Do proper capacity planning before using Ignite cluster. Do paperwork for understanding the size of the cache, number of CPUs or how many JVMs will be required. Let’s assume that you are using Hibernate as an ORM in 10 application servers and wish to use Ignite as an L2 cache. Calculate the total memory usages and the number of Ignite nodes you have to need for maintaining your SLA. An incorrect number of the Ignite nodes can become a b...

Apache Ignite Baseline Topology by Examples

Ignite Baseline Topology or BLT represents a set of server nodes in the cluster that persists data on disk. Where, N1-2 and N5 server nodes are the member of the Ignite clusters with native persistence which enable data to persist on disk. N3-4 and N6 server nodes are the member of the Ignite cluster but not a part of the baseline topology. The nodes from the baseline topology are a regular server node, that store's data in memory and on the disk, and also participates in computing tasks. Ignite clusters can have different nodes that are not a part of the baseline topology such as: Server nodes that are not used Ignite native persistence to persist data on disk. Usually, they store data in memory or persists data to a 3rd party database or NoSQL. In the above equitation, node N3 or N4 might be one of them. Client nodes that are not stored shared data. To better understand the baseline topology concept, let’s start at the beginning and try to understand its goal and what ...