Skip to main content

Modern application design with In-memory data fabrics


In this article, author of the book "High Performance in-memory computing with Apache Ignite", discussing the design of modern application architecture with Apache Ignite. Part of this article taken from the book.

Let’s take a quick look at an architecture of a traditional system. The traditional application architecture uses data stores which have synchronous read-write operations. This is useful for data consistency and data durability, but it is very easy to get bottleneck if there are a lot of transactions waiting in the queue. Consider the following traditional architecture as shown below.

High-volume transaction processing.

In-memory data grid adds an additional layer within an environment, which uses the Random-Access Memory (RAM) of the server to store most of all data required by the applications. In-memory data grid sits between the application servers and the data store. In-memory data grid uses a cache of frequently accessed data by the client in the active memory and then can access the persistence store whenever needed and even asynchronously send and receive updates from the persistence store. An application architecture with in-memory data grid is shown below.

By using in-memory data grid, data moves closer to the application endpoints. This approach reduces the response times and can lower transactions times from a few seconds to fractions of a second. This way, application can support extremely large numbers of concurrent transactions involving terabytes of operational data, providing a faster, more reliable transactional experience for customers. It is also a more modern scalable data management system than traditional RDBMS, able to elastically scale as demand increases.

Resilient web acceleration.

With in-memory data grid like Apache Ignite, you can provide fault tolerance of your web application and accelerate your web application performance. Without changing any code, you can share session states between web applications through caches.
This above approach provides the highest level of high availability of a system and a customer experience. Since Ignite is an in-memory solution, the performance of the web session clustering and replication mechanism of user web sessions are very high.

Event processing & real-time analysis.

Data tells the story of what's happing with your business on the background right now. With the IoT as a continuous data source, the opportunities to take advantage of the hot data is greater than ever. Traditional data management system cannot process big data fast enough to notify the business of important events as they occur: such as online credit card fraud detection or risk calculation. Apache Ignite allows processing continuous never-ending streams of data in scalable and fault-tolerant fashion in-memory, rather than analyzing data after it's reached the database.
Not only does this enable you to correlate relationships and detect meaningful patterns from significantly more data that you can process it faster and much more efficiently. Apache Ignite in-memory data grid can manage a tremendous amount of incoming data and push notifications to the business application when changes occur with the server. The Apache Ignite continuous queries capability allows systems to quickly access a large amount of incoming never ending data and take action.

Microservices in distributed fashion.

Microservice architecture has a number of benefits and enforces a level of modularity that in practice is extremely difficult to achieve with a monolithic code base. In-memory data grid like Apache Ignite can provide independent cache nodes to corresponding microservices in the same distributed cluster and gives you a few advantages over traditional approaches.
It allows you to use maximum uses of the data fabrics/grid resources. Services running on the in-memory cluster is much faster than the disk-based application server. Apache Ignite microservice based service grid provides automatically deploy any number of distributed service instance in the cluster.

BigData accelerator.

Hadoop has been widely used for its ability to economically store and analyze large data sets and has long passed the point of being nascent technology. However, it’s batch scheduling overhead and disk-based data storage have made it unsuitable for use in analyzing live, real-time data in the production environment. One of the main factors that limit performance scaling of Hadoop and Map/Reduce is the fact that Hadoop relies on a file system that generates a lot of input/output (I/O) files. An alternative is to store the needed distributed data within the memory. Placing Map/Reduce in- memory with the data it needs eliminates file I/O latency.
Apache Ignite has offered a set of useful components allowing in-memory Hadoop job executing and file system operations. Apache Ignite Hadoop accelerator can automatically deploy all necessary executable programs and libraries for the execution of MapReduce across the JVMs, greatly reducing startup time down to milliseconds. This speeds up analysis by avoiding delays in accessing secondary storage. Also, because the execution engine is integrated with the in-memory data grid, key/value pairs hosted within the data grid can be efficiently read into the execution engine to minimize access time.

Cache as a Service.

Data-driven applications that take too long to load are boring and frustrating to use. Four out of five online users will click away if a page stalls while loading. In-memory data grid can provide a common caching layer across the organization, which can allow multiple applications to access managed in-memory cache.

You can isolate the caching layer from the applications by separating the caching layer from the applications. Any applications (Java, .Net, C++) across the organization can store and read data from the cache. By using in-memory data grid as a service, it’s not necessary to build and deploy local caching infrastructure for each application. Applications can use Apache Ignite as cache-aside or write behind to their data base or load data from the database into the cache. It’s eliminate the complexity of management of the hundred or more separate caching infrastructures.

These are some of the ways in-memory grids like Apache Ignite have served as an essential, architectural component for transforming the way businesses use their data to do business. But that’s not all folks! We will cover a lot of in-memory data grid use cases and application architecture in more depth through the book.

Comments

Popular posts from this blog

8 things every developer should know about the Apache Ignite caching

Any technology, no matter how advanced it is, will not be able to solve your problems if you implement it improperly. Caching, precisely when it comes to the use of a distributed caching, can only accelerate your application with the proper use and configurations of it. From this point of view, Apache Ignite is no different, and there are a few steps to consider before using it in the production environment. In this article, we describe various technics that can help you to plan and adequately use of Apache Ignite as cutting-edge caching technology. Do proper capacity planning before using Ignite cluster. Do paperwork for understanding the size of the cache, number of CPUs or how many JVMs will be required. Let’s assume that you are using Hibernate as an ORM in 10 application servers and wish to use Ignite as an L2 cache. Calculate the total memory usages and the number of Ignite nodes you have to need for maintaining your SLA. An incorrect number of the Ignite nodes can become a b...

Tip: SQL client for Apache Ignite cache

A new SQL client configuration described in  The Apache Ignite book . If it got you interested, check out the rest of the book for more helpful information. Apache Ignite provides SQL queries execution on the caches, SQL syntax is an ANSI-99 compliant. Therefore, you can execute SQL queries against any caches from any SQL client which supports JDBC thin client. This section is for those, who feels comfortable with SQL rather than execute a bunch of code to retrieve data from the cache. Apache Ignite out of the box shipped with JDBC driver that allows you to connect to Ignite caches and retrieve distributed data from the cache using standard SQL queries. Rest of the section of this chapter will describe how to connect SQL IDE (Integrated Development Environment) to Ignite cache and executes some SQL queries to play with the data. SQL IDE or SQL editor can simplify the development process and allow you to get productive much quicker. Most database vendors have their own fron...

Load balancing and fail over with scheduler

Every programmer at least develop one Scheduler or Job in their life time of programming. Nowadays writing or developing scheduler to get you job done is very simple, but when you are thinking about high availability or load balancing your scheduler or job it getting some tricky. Even more when you have a few instance of your scheduler but only one can be run at a time also need some tricks to done. A long time ago i used some data base table lock to achieved such a functionality as leader election. Around 2010 when Zookeeper comes into play, i always preferred to use Zookeeper to bring high availability and scalability. For using Zookeeper you have to need Zookeeper cluster with minimum 3 nodes and maintain the cluster. Our new customer denied to use such a open source product in their environment and i was definitely need to find something alternative. Definitely Quartz was the next choose. Quartz makes developing scheduler easy and simple. Quartz clustering feature brings the HA and...