Skip to main content

The Apache Ignite Book: table of contents

This is the table of contents of the Apache Ignite book that we are planning to publish end of this year 2018.


Table of contents:
  • Chapter 1. Introduction
  • Chapter 2. Getting started with Apache Ignite
    • Installing and setting up Apache Ignite
    • Building from source code
    • Run multiple instances of Apache Ignite in a single host
    • Running Apache Ignite from Docker
    • Using Apache Ignite SQLLINE command tool
    • Meet with Apache Ignite SQL engine: H2 database
    • Using a universal SQL client IDE to working with Apache Ignite
    • Apache Ignite thin client
    • First Java application
    • Using REST API for manipulating the Apache Ignite caches
    • Configure a multimode cluster in different hosts
    • Summary
    • What's Next
  • Chapter 3. Apache Ignite use cases
    • Caching for fast data access
    • High volume transaction processing
    • HTAP
    • Fast data processing
    • Lambda architecture
    • Resilient web acceleration
    • Microservices in distributed fashion
    • Cache as a service
    • Big Data accelerations
    • In-memory machine learning
    • In-memory geospatial
    • Cluster management
    • Summary
    • What’s next
  • Chapter 4. Architecture deep drive
    • Functional overview
    • Understanding the cluster topology: shared nothing architecture
      • Client and server node
      • Embedded with the application
      • Client and the server nodes in the same host
      • Running multiple nodes within single JVM
      • Real cluster topology
    • Data partitioning in Ignite
      • Understanding data distribution: DHT
      • Rendezvous hashing
      • Reliability and redundancy of the data
      • Partitioned mode
      • Replicated mode
      • Local mode
      • Near cache
      • Partition loss policies
      • Partition map exchange in Ignite
    • Caching strategy
      • Cache a-side
      • Read through and write through
      • Write behind
    • Apache Ignite life cycle
    • Protocols and clients
    • Distributed data models
    • CAP theorem and where does Ignite stand in?
    • Durable memory architecture
    • Native persistence
    • Data affinity in Ignite
      • Cluster group
      • Data collocation
      • Compute collocation with Data
      • Node filter
      • ZeroSPOF
    • Data rebalancing and indexing
    • Transactions
    • Discovery service provider interfaces
    • Security
    • Multi data center replication
    • Asynchronous support
    • Resilience
    • Ignite baseline topology
    • Ignite internal engines
      • Ignite SQL engines
      • Ignite full text search engine
      • Servlet container
    • Management and monitoring
    • Key API’s
    • Summary
    • What's next
  • Chapter 5: Intelligent caching
    • Smart in-memory caching
    • Database caching
      • MyBatis caching
      • Hibernate 2nd level cache
    • Memoization
    • Web session clustering
    • Updating cache
    • Prepare the cache correctly
    • Summary
    • What's next
  • Chapter 6. Database
    • Using JPA with Ignite
    • Hibenate OGM
    • SQL queries
      • Projection and indexing
      • Query API
      • Collocated distributed Joins
      • Non-collocated distributed joins
      • Performance tuning
    • Cache queries
      • Scan queries
      • Text queries
    • Data expiration
    • Eviction policies
    • Continues query
    • Distributed transactions
    • Persistence
      • Native persistence
      • Persistence in RDBMS
      • Persistence in NoSQL
    • HTAP
    • Security
    • Summary
    • What’s next
  • Chapter 7. Distributed computing
    • Compute grid
      • Distributed Closures
      • MapReduce and fork-join
      • Per-Node share state
      • Distributed task session
      • Fault tolerance & checkpointing
      • Collocation of compute and data
      • Job scheduling
    • Service Grid
      • Developing services
      • Cluster singleton
      • Service management configuration
    • Developing microservices
  • Chapter 8. Fast data processing
    • IgniteDataStreamer
      • StreamReciever
      • StreamVisitor
    • Kafka streamer
    • Camel data streamer
    • Flume streamer
    • Storm data streamer
    • ZeroMQ streamer
    • IoT in action: MQTT streamer
    • Implementing lambda architecture
    • Summary
    • What’s next
  • Chapter 9. Accelerating BigData computing
    • Hadoop accelerator
      • In-memory Map/Reduce
      • Using Apache Pig for data analysis
      • Near real-time data analysis with Hive
      • Replace HDFS by Ignite In-memory File System (IGFS)
      • Hadoop file system cache
    • Ignite for Apache Spark
      • Apache Spark – an introduction
      • IgniteContext
      • IgniteRDD
      • Ignite for Spark data frame
      • Spark application example
    • Summary
    • What’s next
  • Chapter 10. Monitoring and management
    • Web console for monitoring
    • JMX monitoring
    • Using 3rd party tools for monitoring
    • Summary


Comments

Popular posts from this blog

8 things every developer should know about the Apache Ignite caching

Any technology, no matter how advanced it is, will not be able to solve your problems if you implement it improperly. Caching, precisely when it comes to the use of a distributed caching, can only accelerate your application with the proper use and configurations of it. From this point of view, Apache Ignite is no different, and there are a few steps to consider before using it in the production environment. In this article, we describe various technics that can help you to plan and adequately use of Apache Ignite as cutting-edge caching technology. Do proper capacity planning before using Ignite cluster. Do paperwork for understanding the size of the cache, number of CPUs or how many JVMs will be required. Let’s assume that you are using Hibernate as an ORM in 10 application servers and wish to use Ignite as an L2 cache. Calculate the total memory usages and the number of Ignite nodes you have to need for maintaining your SLA. An incorrect number of the Ignite nodes can become a b...

Apache Ignite Baseline Topology by Examples

Ignite Baseline Topology or BLT represents a set of server nodes in the cluster that persists data on disk. Where, N1-2 and N5 server nodes are the member of the Ignite clusters with native persistence which enable data to persist on disk. N3-4 and N6 server nodes are the member of the Ignite cluster but not a part of the baseline topology. The nodes from the baseline topology are a regular server node, that store's data in memory and on the disk, and also participates in computing tasks. Ignite clusters can have different nodes that are not a part of the baseline topology such as: Server nodes that are not used Ignite native persistence to persist data on disk. Usually, they store data in memory or persists data to a 3rd party database or NoSQL. In the above equitation, node N3 or N4 might be one of them. Client nodes that are not stored shared data. To better understand the baseline topology concept, let’s start at the beginning and try to understand its goal and what ...

Benchmarking high performance java collection framework

I am an ultimate fan of java high performance framework or library. Java native collection framework always works with primitive wrapper class such as Integer, Float e.t.c. Boxing and unboxing of wrapper class to primitive data type always decrease the java execution performance. Most of us, always looking for such a library or framework to works with primitive data type in collections for increasing performance of Java application. Most of the time i uses javolution framework to get better performance, however, this holiday i have read about a few new java collections frameworks and decided to do some homework benchmarking to find out, how much they could better than Java native collection framework. I have examine two new java collection framework, one of them are fastutil and another one are HPPC. For benchmarking i have used java JMH with mode Throughput. For benchmarking i took similar collection for java ArrayList, HashSet and HasMap from two above described frameworks. Col...