Skip to main content

Key differences between Apache Ignite, Hazelcast, Cassandra and Tarantool

Apache Ignite is widely used around the world and is growing all the time. Companies like Barclays, Misys, Sberbank (3r largest bank in Europe), ING, JacTravel all use Ignite to power pieces of their architecture that are critical to the day-to-day operations of those organizations. Moreover, the vendor like TIBCO uses core caching data-grid module of Apache Ignite with advanced indexing and SQL capability for their Master Data Management platform.

However there are a few others alternatives to Apache Ignite from other vendors such as HazelCast, Oracle, Ehcache, GemFire, etc. The main difference of Apache Ignite from the others is the number of functionalities and simplicity of use. Apache Ignite provides a variety of functionalities, which you can use for different use cases. The key differences between the Apache Ignite, Hazelcast, and Apache Cassandra are as follows:


Feature Apache Ignite Hazelcast Apache Cassandra
Data model Key-value Key-value Column family
Durability Yes (WAL and,memory pages) Yes (not free) Yes (commit log and,SStable)
SQL support Yes SQL like query
language
No, support SQL like
query language
Secondary index Yes Yes Yes
Big data accelerator Yes Yes (not free) No
Transaction Yes Yes CAS – not ACID
compliant
Use case Most suitable for
read/write-heavy workloads
Most suitable
for read/write-heavy workloads
Most suitable for
write-heavy
workloads
Server-side scripting Yes (compute &
service grid)
Yes No
Availability High High High
Streaming Yes Yes (not free) No
In-memory
Map/Reduce
Yes Yes No

From the above table, you can see that unlike other competitors, Apache Ignite provides durable memory architecture (free of charges), server-side scripting (compute grid), a set of components called In-memory Hadoop accelerator and Spark shared RDD that can deliver real-time performance to Hadoop and Spark users. The Apache Ignite is the right choice when you need scalability and high availability with the capability of processing high volume transactions. It is the perfect platform for the mission-critical data on commodity hardware or cloud infrastructure.

Now, let’s compare the Apache Ignite functionalities with another in-memory database named Tarantool. Tarantool is an in-memory database, design by a team led by a former MySQL engineer.


Feature Apache Ignite Tarantool
Data model Key-value Container like
Durability Yes (WAL and memory pages) Yes (WAL, LSM tree)
SQL support Yes No
Secondary index Yes Yes
Big data accelerator Yes No
ORM support Yes No
Distributed transaction Yes No
Use case Most suitable for
read/write-heavy workloads
Most suitable
for read/write-heavy workloads
Server-side scripting Yes (compute &
service grid)
Yes (using programming
language Lua)
Availability High High! Master-slave replication
Streaming Yes Yes (built-in queues)
In-memory
Map/Reduce
Yes Yes

If you carefully study the above table, you can notice that Tarantool doesn’t support SQL and distributed transactions. Even Tarantool doesn’t provide any ORM support for using Hibernate or MyBatis. From the architecture point of view, Tarantool uses Master-Slave replication, which can proceed data loss whenever a master fails.

Comments

Popular posts from this blog

8 things every developer should know about the Apache Ignite caching

Any technology, no matter how advanced it is, will not be able to solve your problems if you implement it improperly. Caching, precisely when it comes to the use of a distributed caching, can only accelerate your application with the proper use and configurations of it. From this point of view, Apache Ignite is no different, and there are a few steps to consider before using it in the production environment. In this article, we describe various technics that can help you to plan and adequately use of Apache Ignite as cutting-edge caching technology. Do proper capacity planning before using Ignite cluster. Do paperwork for understanding the size of the cache, number of CPUs or how many JVMs will be required. Let’s assume that you are using Hibernate as an ORM in 10 application servers and wish to use Ignite as an L2 cache. Calculate the total memory usages and the number of Ignite nodes you have to need for maintaining your SLA. An incorrect number of the Ignite nodes can become a b...

Benchmarking high performance java collection framework

I am an ultimate fan of java high performance framework or library. Java native collection framework always works with primitive wrapper class such as Integer, Float e.t.c. Boxing and unboxing of wrapper class to primitive data type always decrease the java execution performance. Most of us, always looking for such a library or framework to works with primitive data type in collections for increasing performance of Java application. Most of the time i uses javolution framework to get better performance, however, this holiday i have read about a few new java collections frameworks and decided to do some homework benchmarking to find out, how much they could better than Java native collection framework. I have examine two new java collection framework, one of them are fastutil and another one are HPPC. For benchmarking i have used java JMH with mode Throughput. For benchmarking i took similar collection for java ArrayList, HashSet and HasMap from two above described frameworks. Col...

Apache Ignite Baseline Topology by Examples

Ignite Baseline Topology or BLT represents a set of server nodes in the cluster that persists data on disk. Where, N1-2 and N5 server nodes are the member of the Ignite clusters with native persistence which enable data to persist on disk. N3-4 and N6 server nodes are the member of the Ignite cluster but not a part of the baseline topology. The nodes from the baseline topology are a regular server node, that store's data in memory and on the disk, and also participates in computing tasks. Ignite clusters can have different nodes that are not a part of the baseline topology such as: Server nodes that are not used Ignite native persistence to persist data on disk. Usually, they store data in memory or persists data to a 3rd party database or NoSQL. In the above equitation, node N3 or N4 might be one of them. Client nodes that are not stored shared data. To better understand the baseline topology concept, let’s start at the beginning and try to understand its goal and what ...